Career Information

How should one go about finding a job in microbiology?

Download Career Brochure

Careers in industrial microbiology and biotechnology

What is industrial microbiology/biotechnology?
Industrial microbiology or microbial biotechnology is the application of scientific and engineering principles to the processing of materials by microorganisms (such as bacteria, fungi, algae, protozoa and viruses) or plant and animal cells to create useful products or processes. The microorganisms utilized may be natural isolates, laboratory selected mutants or microbes that have been genetically engineered using recombinant DNA methods. The terms “industrial microbiology” and “biotechnology” are often one and the same.

Areas of industrial microbiology include quality assurance for the food, pharmaceutical, and chemical industries. Industrial microbiologists may also be responsible for air and plant contamination, health of animals used in testing products, and discovery of new organisms and pathways. For instance, most antibiotics come from microbial fermentations involving a group of organisms called actinomycetes. Other organisms such as yeasts are used in baking, in the production of alcohol for beverages, and in fuel production (gasohol). Additional groups of microorganisms form products that range from organic acids to enzymes used to create various sugars, amino acids, and detergents. For example, the sweetener aspartame is derived from amino acids produced by microorganisms.

Industrial microbiologists may also deal with products associated with the food and dairy industries, with the prevention or deterioration of processed or manufactured goods, and with waste disposal systems. For more in-depth coverage of topics in industrial microbiology, you may want to exam¬ine the Society for Industrial Microbiology and Biotechnology’s peer-reviewed Journal of Industrial Microbiology and Biotechnology and its homepage

What kind of work does an industrial microbiologist do?

When choosing a career in industrial microbiology or biotechnology, you should be prepared to embrace a multidisciplinary science. Very rarely will challenges be unidirectional, but rather will require investigation of several aspects of a process or production problem. In such circumstances, you will often need skills and expertise in additional fields such as molecular biology, bioengineering, or biochemistry.

Many industrial microbiologists/biotechnologists are responsible for the discovery, development, or implementation of certain processes and the quality of resultant products:

  • Antibiotics/Antimicrobials
    Both natural and chemically enhanced microbial products can be used to control human, animal, and plant diseases. Using traditional genetics or recombinant DNA techniques, the microorganisms can be modified to improve the yield or action of antibiotics and other antimicrobial agents. New research directions are aimed at discovering microbial metabolites (with pharmacological activities) useful in the treatment of hypertension, obesity, coronary heart disease, cancer, and inflammation.
  • Vaccines
    Vaccines are essential to protect humans and animals from microbial diseases. Recombinant DNA technology has allowed for the production of vaccines that offer protection without risk of infection (e.g. hepatitis B vaccine). New vaccines are being developed by industrial microbiologists every day.
  • Health-care products
    The development and production of diagnostic assays that utilize monoclonal antibody or DNA probe technology are essential in the manufacture of health-care products such as rapid tests for strep throat, pregnancy, and AIDS. Microorganisms are also used to produce human or animal biologicals such as insulin, growth hormone, and antibodies. The industrial microbiologist/biotechnologist may screen new microbial sources (e.g., marine microorganisms) for their ability to produce new pharmaceuticals or develop new diagnostic assay systems.
  • Foods/Beverages produced by microbial activity
    Yogurt, cheese, chocolate, butter, pickles, sauerkraut, soy sauce, food supplements (such as vitamins and amino acids), food thickeners (produced from microbial polysaccharides), alcohol (beer, whiskeys, wines), sausages, and silage for animals are a small sample of products of microbial activity. Industrial microbiologists/biotechnologists may be involved in producing concentrated microbial inocula for fermentations or the maintenance of fermentation systems utilized in production facilities. They may also take part in identifying the organisms involved in and maintaining proprietary culture collections.

    There is a great deal of microbiology in the food and beverage industries. Some examples are:

    • Foods/Beverages cured or improved by microbial activity
      Production of coffee, tea, cocoa, summer sausage, vanilla, cheese, olives, and tobacco all require microbial activity and a microbiologist to insure product quality.
    • Food flavoring agents and preservatives
      Organic acids, such as citric, malic, and ascorbic acids, and monosodium glutamate are microbial products commonly used in foods.
    • Foods
      Mushrooms, truffles, and some red and green algae are consumed directly. Yeasts are used as food supplements for humans and animals.
  • Agriculture
    Conventional, recombinant DNA, and monoclonal antibody techniques are used to improve microbial inoculants which serve as fertilizer supplements by fixing atmospheric nitrogen to improve plant yields and to serve as plant pest controls. All of these require a microbiologist to insure product efficacy and quality.
  • Enzymes
    Industrial applications of enzymes include the production of cheese, the clarification of apple juice, the development of more efficient laundry detergents, pulp and paper production, and the treatment of sewage. These processes have been dramatically enhanced by the use of recombinant DNA techniques to design enzymes of increased activity, stability, and specificity.
  • Carbohydrates
    Some molecular sieves for purification/separation processes (e.g., dextran) and thickening agents (e.g., xanthan used in salad dressings), which are stable at high temperatures, are examples of microbial carbohydrates. The latter are also used for secondary oil recovery in oil fields and as lubricants in drilling oil wells, gelling agents in foods, and thickeners in both paints and foods.
  • Organic chemicals
    Compounds such as acetone, methanol, butanol, and ethanol have multiple applications in industrial settings, often as raw materials for industrial processes. The microbiologist is involved in research on improvements in the production and detection of new metabolic pathways. Microbes will increasingly be used to supplant or replace those processes which rely on petroleum/natural gas for the production of these compounds.
  • Oil recovery/mining
    Oil recovery may be facilitated by the development of unique bacteria which produce a surfactant that forces trapped oil out of rocks. Extraction of minerals from low-grade ores is enhanced by some bacteria (microbial leaching). In addition, selective binding of metals by biohydrometallurgical processes is important in recycling of metals such as silver and uranium. Research and developments in these areas also offer career paths for industrial microbiologists/biotechnologists.
  • Contamination control
    The industrial microbiologist develops assays to detect microbial contaminants in food and develops preservatives; evaluates natural or synthetic agents for the prevention of disease, deterioration, or spoilage; and determines minute quanti¬ties of vitamins or amino acids in food samples. Microbiologists are also involved in the development of procedures for the control of deterioration in cosmetics, steel, rubber, textiles, paint, and petroleum products.
  • Waste and wastewater management
    The production of clean water and the destruction of waste material are important for preserving the environment and providing drinkable water. The industrial microbiologist is directly involved in developing microbial strains to detoxify wastes of industrial, agricultural, or human origin.
  • Environmental science
    Examination of microbes living in unusual environments (e.g. high temperatures, salt, low pH or temperature, high radiation) may lead to discovery of or engineering of microbes with new abilities to degrade or transform pollutants and improve the environment. Industrial microbiologists/biotechnologists are involved in engineering microbes to solve contamination and recycling problems, and assess the environmental safety of new and exciting products.

What training and education are required to succeed in industrial microbiology/ biotechnology?
High school students interested in a career in industrial microbiology/biotechnology should take college preparatory courses in mathematics, physics, biology, and chemistry. You may become a skilled technician through on-the-job training, but many organizations require that a technician take career-related college level courses in order to advance to higher paying technical positions. Overall, employment opportunities in industrial microbiology/biotechnology are very limited for high school graduates.

Although many high school programs now offer formal microbiology/biotechnology instruction you will probably have to participate in extra-curricular activities (e.g. science fair projects or individualized study programs guided by your teacher or a scientist in the community) to supplement the material covered in these courses. Further exposure to industrial microbiology may be obtained by working during the summer in an industrial, university, or hospital microbiology laboratory. Your guidance counselor may also be helpful in identifying college, industry, and government sponsored summer enrichment programs for high school or undergraduate students.

Most professional levels of employment require a college degree (BS) in biology, microbiology, or biotechnology with minors in one or more of the complementary sciences. Individuals who have project responsibilities often have one or more advanced degrees (MS and/or PhD) in biology, microbiology, or some other allied field such as molecular biology, biochemistry, biotechnology, chemical engineering, or genetics.

A person with a BS degree has several career options. One may begin a career in an industrial or clinical entry-level position. There may also be opportunities in sales of laboratory products or instruments. In many organizations, employees are encouraged to continue their educations. It may be possible in such an environment to obtain a higher degree while working full-time. Many organizations employing industrial microbiologists/biotechnologists will have dual career paths for advancement. This means that the scientists will have the opportunity to advance to higher levels of responsibility either by staying in their chosen technical field or by assuming administrative responsibilities in technical management. Advancement to Project Manager, Plant Manager, or Director is common. As with most careers, an individual advances based on his or her unique approach to assigned tasks and contribu¬tions to achievements of his or her employer.

Why should someone consider a career in industrial microbiology/biotechnology?
A career in industrial microbiology/biotechnology offers a va¬riety of work assignments. These may include basic research, process development, production, technical services, quality control, compliance control, or technical sales. Some industrial microbiologists may be considered genetic engineers (utilizing recombinant DNA techniques) while others are classified as bioprocess engineers (optimizing enzymatic reaction systems for a desired product). If you are the kind of person who likes variety in work responsibilities and enjoys solving problems and making things work, you should seriously consider a ca¬reer in this area.

As products developed by applied research move into production, a much wider range of personnel will be needed by industry, government, and academia. Industry will require scientists who can discover new products and develop methods for producing those products in large quantities. Government agencies will employ microbiologists/biotechnologists in research, regulatory, and oversight positions. Academia will require educators to prepare the next generation of industrial microbiologists/biotechnologists. Individuals who develop their skills and expertise will find mobility in the job marketplace since their basic background and training will be transferable to new opportunities.

Additional information may be obtained by contacting the following organizations:

American Chemical Society
1155 Sixteenth St., NW
Washington, DC 20036
Phone (US only): 800-227-5558
Phone (International calls): 202-872-4600
Fax: 202-776-8258

American Dairy Science Association
1111 N. Dunlap Avenue
Savoy, IL 61874
Phone: 217/356-5146
Fax: 217-398-4119
Email: adsa@assochq.

American Institute of Chemical Engineers
3 Park Avenue
New York, NY 10016-5991
Phone (General inquiries): 800-242-4363
Phone (International calls): 212-591-8100
Fax: 212-591-8888

American Petroleum Institute
1220 L Street, NW
Washington, DC 20005-4070
Phone: 202-682-8000

American Society for Microbiology
1752 N Street, N.W.
Washington, D.C. 20036-2904
Phone: 202-737-3600

130 Albert Street, Suite 420
Ottawa, Ontario K1P 5G4
Phone (Ontario): 613-230-5585
Phone: (Toronto): 416-979-2652
Fax: 613-563-8850

Institute of Food Technologists
525 W. Van Buren,
Ste. 1000
Chicago, IL 60607
Phone: 312-782-8424
Fax: 312-782-8348

Society for Industrial Microbiology and Biotechnology
3929 Old Lee Highway
Suite 92A
Fairfax, VA 22030-2421
Phone: 703-691-3357
Fax: 703-691-7991

Prepared by the Education Committee, Society for Industrial Microbiology and Biotechnology, 2007. Published in SIMB’s “Careers in industrial microbiology & biotechnology” brochure, available in print and online through SIMB. Copyright ©2007 Society for Industrial Microbiology and Biotechnology.